RandomEdgeSampling.java
/*
* Copyright © 2014 - 2021 Leipzig University (Database Research Group)
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.gradoop.flink.model.impl.operators.sampling;
import org.apache.flink.api.java.DataSet;
import org.gradoop.common.model.api.entities.Edge;
import org.gradoop.common.model.api.entities.GraphHead;
import org.gradoop.common.model.api.entities.Vertex;
import org.gradoop.flink.model.api.epgm.BaseGraph;
import org.gradoop.flink.model.api.epgm.BaseGraphCollection;
import org.gradoop.flink.model.impl.functions.epgm.Id;
import org.gradoop.flink.model.impl.functions.epgm.SourceId;
import org.gradoop.flink.model.impl.functions.epgm.TargetId;
import org.gradoop.flink.model.impl.functions.utils.LeftSide;
import org.gradoop.flink.model.impl.operators.sampling.functions.RandomFilter;
/**
* Computes an edge sampling of the graph (new graph head will be generated). Retains randomly
* chosen edges of a given relative amount and their associated source- and target-vertices. No
* unconnected vertices will retain in the sampled graph.
*
* @param <G> The graph head type.
* @param <V> The vertex type.
* @param <E> The edge type.
* @param <LG> The type of the graph.
* @param <GC> The type of the graph collection.
*/
public class RandomEdgeSampling<
G extends GraphHead,
V extends Vertex,
E extends Edge,
LG extends BaseGraph<G, V, E, LG, GC>,
GC extends BaseGraphCollection<G, V, E, LG, GC>> extends SamplingAlgorithm<G, V, E, LG, GC> {
/**
* Relative amount of edges in the result graph
*/
private final float sampleSize;
/**
* Seed for the random number generator
* If seed is 0, the random generator is created without seed
*/
private final long randomSeed;
/**
* Creates new RandomEdgeSampling instance.
*
* @param sampleSize relative sample size, e.g. 0.5
*/
public RandomEdgeSampling(float sampleSize) {
this(sampleSize, 0L);
}
/**
* Creates new RandomEdgeSampling instance.
*
* @param sampleSize relative sample size, e.g. 0.5
* @param randomSeed random seed value (can be 0)
*/
public RandomEdgeSampling(float sampleSize, long randomSeed) {
this.sampleSize = sampleSize;
this.randomSeed = randomSeed;
}
@Override
public LG sample(LG graph) {
DataSet<E> newEdges = graph.getEdges().filter(new RandomFilter<>(sampleSize, randomSeed));
DataSet<V> newSourceVertices = graph.getVertices()
.join(newEdges)
.where(new Id<>()).equalTo(new SourceId<>())
.with(new LeftSide<>())
.distinct(new Id<>());
DataSet<V> newTargetVertices = graph.getVertices()
.join(newEdges)
.where(new Id<>()).equalTo(new TargetId<>())
.with(new LeftSide<>())
.distinct(new Id<>());
DataSet<V> newVertices = newSourceVertices.union(newTargetVertices).distinct(new Id<>());
return graph.getFactory().fromDataSets(newVertices, newEdges);
}
}