RandomVertexEdgeSampling.java
/*
* Copyright © 2014 - 2021 Leipzig University (Database Research Group)
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.gradoop.flink.model.impl.operators.sampling;
import org.gradoop.common.model.api.entities.Edge;
import org.gradoop.common.model.api.entities.GraphHead;
import org.gradoop.common.model.api.entities.Vertex;
import org.gradoop.flink.model.api.epgm.BaseGraph;
import org.gradoop.flink.model.api.epgm.BaseGraphCollection;
/**
* Computes an edge sampling of the graph (new graph head will be generated). First selects
* randomly chosen vertices of a given relative amount and all edges which source- and
* target-vertices were chosen. Then randomly chooses edges from this set of edges and their
* associated source- and target-vertices. No unconnected vertices will retain in the sampled graph.
*
* @param <G> The graph head type.
* @param <V> The vertex type.
* @param <E> The edge type.
* @param <LG> The type of the graph.
* @param <GC> The type of the graph collection.
*/
public class RandomVertexEdgeSampling<
G extends GraphHead,
V extends Vertex,
E extends Edge,
LG extends BaseGraph<G, V, E, LG, GC>,
GC extends BaseGraphCollection<G, V, E, LG, GC>> extends SamplingAlgorithm<G, V, E, LG, GC> {
/**
* The sampling type enum
*/
public enum VertexEdgeSamplingType {
/**
* Simple version (uniform version for both vertices and edges)
*/
SimpleVersion,
/**
* Nonuniform vertex sampling and then uniform edge sampling
*/
NonuniformVersion,
/**
* Nonuniform vertex sampling and sample sizes add up to 1
*/
NonuniformHybridVersion,
}
/**
* The sampling type
*/
private final VertexEdgeSamplingType vertexEdgeSamplingType;
/**
* Relative amount of vertices in the result graph, e.g. 0.8
*/
private final float vertexSampleSize;
/**
* Relative amount of edges in the result graph, e.g. 0.6
* It should be 1 - vertexSampleSize in NonuniformHybridVersion
*/
private final float edgeSampleSize;
/**
* Seed for the random number generator
* If seed is 0, the random generator is created without seed, e.g. 0L
*/
private final long randomSeed;
/**
* Creates new RandomVertexEdgeSampling instance.
*
* @param sampleSize relative sample size for edges and vertices
*/
public RandomVertexEdgeSampling(float sampleSize) {
this(sampleSize, sampleSize, 0L, VertexEdgeSamplingType.SimpleVersion);
}
/**
* Creates new RandomVertexEdgeSampling instance.
*
* @param vertexSampleSize relative sample size for vertices
* @param edgeSampleSize relative sample size for edges
*/
public RandomVertexEdgeSampling(float vertexSampleSize, float edgeSampleSize) {
this(vertexSampleSize, edgeSampleSize, 0L, VertexEdgeSamplingType.SimpleVersion);
}
/**
* Creates new RandomVertexEdgeSampling instance.
*
* @param vertexSampleSize relative sample size for vertices
* @param edgeSampleSize relative sample size for edges
* @param vertexEdgeSamplingType the type of sampling
*/
public RandomVertexEdgeSampling(float vertexSampleSize, float edgeSampleSize,
VertexEdgeSamplingType vertexEdgeSamplingType) {
this(vertexSampleSize, edgeSampleSize, 0L, vertexEdgeSamplingType);
}
/**
* Creates new RandomVertexEdgeSampling instance.
*
* @param vertexSampleSize relative sample size for vertices
* @param edgeSampleSize relative sample size for edges
* @param randomSeed random seed value (can be 0)
* @param vertexEdgeSamplingType type of sampling
*/
public RandomVertexEdgeSampling(float vertexSampleSize, float edgeSampleSize, long randomSeed,
VertexEdgeSamplingType vertexEdgeSamplingType) {
this.vertexSampleSize = vertexSampleSize;
this.edgeSampleSize = edgeSampleSize;
this.randomSeed = randomSeed;
this.vertexEdgeSamplingType = vertexEdgeSamplingType;
}
@Override
public LG sample(LG graph) {
switch (vertexEdgeSamplingType) {
case SimpleVersion:
graph = graph.callForGraph(new RandomVertexSampling<>(vertexSampleSize, randomSeed));
graph = graph.callForGraph(new RandomEdgeSampling<>(edgeSampleSize, randomSeed));
break;
case NonuniformVersion:
graph = graph.callForGraph(new RandomNonUniformVertexSampling<>(vertexSampleSize, randomSeed));
graph = graph.callForGraph(new RandomEdgeSampling<>(edgeSampleSize, randomSeed));
break;
case NonuniformHybridVersion:
graph = graph.callForGraph(new RandomNonUniformVertexSampling<>(vertexSampleSize, randomSeed));
graph = graph.callForGraph(new RandomEdgeSampling<>(1 - vertexSampleSize, randomSeed));
break;
default:
break;
}
return graph;
}
}