RandomVertexNeighborhoodSampling.java
/*
* Copyright © 2014 - 2021 Leipzig University (Database Research Group)
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.gradoop.flink.model.impl.operators.sampling;
import org.apache.flink.api.java.DataSet;
import org.gradoop.common.model.api.entities.Edge;
import org.gradoop.common.model.api.entities.GraphHead;
import org.gradoop.common.model.api.entities.Vertex;
import org.gradoop.flink.model.api.epgm.BaseGraph;
import org.gradoop.flink.model.api.epgm.BaseGraphCollection;
import org.gradoop.flink.model.impl.functions.epgm.Id;
import org.gradoop.flink.model.impl.functions.epgm.SourceId;
import org.gradoop.flink.model.impl.functions.tuple.Value0Of3;
import org.gradoop.flink.model.impl.operators.sampling.common.SamplingConstants;
import org.gradoop.flink.model.impl.operators.sampling.functions.EdgeSourceVertexJoin;
import org.gradoop.flink.model.impl.operators.sampling.functions.EdgeTargetVertexJoin;
import org.gradoop.flink.model.impl.operators.sampling.functions.EdgesWithSampledVerticesFilter;
import org.gradoop.flink.model.impl.operators.sampling.functions.FilterVerticesWithDegreeOtherThanGiven;
import org.gradoop.flink.model.impl.operators.sampling.functions.Neighborhood;
import org.gradoop.flink.model.impl.operators.sampling.functions.RandomVertex;
/**
* Computes a vertex sampling of the graph (new graph head will be generated). Retains randomly
* chosen vertices of a given relative amount and includes all neighbors of those vertices in the
* sampling. All edges which source- and target-vertices were chosen are sampled, too.
*
* @param <G> The graph head type.
* @param <V> The vertex type.
* @param <E> The edge type.
* @param <LG> The type of the graph.
* @param <GC> The type of the graph collection.
*/
public class RandomVertexNeighborhoodSampling<
G extends GraphHead,
V extends Vertex,
E extends Edge,
LG extends BaseGraph<G, V, E, LG, GC>,
GC extends BaseGraphCollection<G, V, E, LG, GC>> extends SamplingAlgorithm<G, V, E, LG, GC> {
/**
* Relative amount of vertices in the result graph
*/
private final float sampleSize;
/**
* Seed for the random number generator
* If seed is 0, the random generator is created without seed
*/
private final long randomSeed;
/**
* Type of degree which should be considered: input degree, output degree, sum of both.
*/
private final Neighborhood neighborType;
/**
* Creates new RandomVertexNeighborhoodSampling instance.
*
* @param sampleSize relative sample size
*/
public RandomVertexNeighborhoodSampling(float sampleSize) {
this(sampleSize, 0L);
}
/**
* Creates new RandomVertexNeighborhoodSampling instance.
*
* @param sampleSize relative sample size
* @param randomSeed random seed value (can be 0)
*/
public RandomVertexNeighborhoodSampling(float sampleSize, long randomSeed) {
this.sampleSize = sampleSize;
this.randomSeed = randomSeed;
this.neighborType = Neighborhood.BOTH;
}
/**
* Creates new RandomVertexNeighborhoodSampling instance.
*
* @param sampleSize relative sample size
* @param randomSeed random seed value (can be 0
* @param neighborType type of neighbor-vertex for sampling
*/
public RandomVertexNeighborhoodSampling(float sampleSize, long randomSeed,
Neighborhood neighborType) {
this.sampleSize = sampleSize;
this.randomSeed = randomSeed;
this.neighborType = neighborType;
}
/**
* Creates new RandomVertexSampling instance.
*
* @param sampleSize relative sample size
* @param neighborType type of neighbor-vertex for sampling
*/
public RandomVertexNeighborhoodSampling(float sampleSize,
Neighborhood neighborType) {
this.sampleSize = sampleSize;
this.randomSeed = 0L;
this.neighborType = neighborType;
}
@Override
public LG sample(LG graph) {
DataSet<V> sampledVertices = graph.getVertices()
.map(new RandomVertex<>(sampleSize, randomSeed, SamplingConstants.PROPERTY_KEY_SAMPLED));
DataSet<E> newEdges = graph.getEdges()
.join(sampledVertices)
.where(new SourceId<>()).equalTo(new Id<>())
.with(new EdgeSourceVertexJoin<>(SamplingConstants.PROPERTY_KEY_SAMPLED))
.join(sampledVertices)
.where(1).equalTo(new Id<>())
.with(new EdgeTargetVertexJoin<>(SamplingConstants.PROPERTY_KEY_SAMPLED))
.filter(new EdgesWithSampledVerticesFilter<>(neighborType))
.map(new Value0Of3<>());
graph = graph.getFactory().fromDataSets(graph.getVertices(), newEdges)
.callForGraph(new FilterVerticesWithDegreeOtherThanGiven<>(0L));
return graph;
}
}