RandomWalkSampling.java
/*
* Copyright © 2014 - 2021 Leipzig University (Database Research Group)
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.gradoop.flink.model.impl.operators.sampling;
import org.apache.flink.api.java.DataSet;
import org.gradoop.common.model.api.entities.Edge;
import org.gradoop.common.model.api.entities.GraphHead;
import org.gradoop.common.model.api.entities.Vertex;
import org.gradoop.flink.algorithms.gelly.randomjump.KRandomJumpGellyVCI;
import org.gradoop.flink.model.api.epgm.BaseGraph;
import org.gradoop.flink.model.api.epgm.BaseGraphCollection;
import org.gradoop.flink.model.impl.functions.epgm.ByProperty;
import org.gradoop.flink.model.impl.functions.epgm.Id;
import org.gradoop.flink.model.impl.functions.epgm.SourceId;
import org.gradoop.flink.model.impl.functions.tuple.Value0Of3;
import org.gradoop.flink.model.impl.operators.sampling.common.SamplingConstants;
import org.gradoop.flink.model.impl.operators.sampling.functions.EdgeSourceVertexJoin;
import org.gradoop.flink.model.impl.operators.sampling.functions.EdgeTargetVertexJoin;
import org.gradoop.flink.model.impl.operators.sampling.functions.EdgesWithSampledVerticesFilter;
import org.gradoop.flink.model.impl.operators.sampling.functions.Neighborhood;
/**
* Computes a random walk sampling of the graph (new graph head will be generated). Retains visited
* vertices and edges where source and target vertex has been sampled.
*
* @param <G> The graph head type.
* @param <V> The vertex type.
* @param <E> The edge type.
* @param <LG> The type of the graph.
* @param <GC> The type of the graph collection.
*/
public class RandomWalkSampling<
G extends GraphHead,
V extends Vertex,
E extends Edge,
LG extends BaseGraph<G, V, E, LG, GC>,
GC extends BaseGraphCollection<G, V, E, LG, GC>> extends SamplingAlgorithm<G, V, E, LG, GC> {
/**
* Sample size
*/
private final float sampleSize;
/**
* Number of start vertices
*/
private final int numberOfStartVertices;
/**
* Probability of jumping instead of walking along edges
*/
private final float jumpProbability;
/**
* Max iteration count
*/
private final int maxIteration;
/**
* Constructor to create an instance of RandomWalk sampling
*
* @param sampleSize sample size
* @param numberOfStartVertices number of start vertices
*/
public RandomWalkSampling(float sampleSize, int numberOfStartVertices) {
this.sampleSize = sampleSize;
this.numberOfStartVertices = numberOfStartVertices;
this.jumpProbability = 0.1f;
this.maxIteration = Integer.MAX_VALUE;
}
/**
* Constructor to create an instance of RandomWalk sampling
*
* @param sampleSize sample size
* @param numberOfStartVertices number of start vertices
* @param jumpProbability probability to jump instead of walk
* @param maxIteration max gelly iteration count
*/
public RandomWalkSampling(float sampleSize, int numberOfStartVertices, float jumpProbability,
int maxIteration) {
this.sampleSize = sampleSize;
this.numberOfStartVertices = numberOfStartVertices;
this.jumpProbability = jumpProbability;
this.maxIteration = maxIteration;
}
@Override
protected LG sample(LG graph) {
LG gellyResult = graph.callForGraph(
new KRandomJumpGellyVCI<>(numberOfStartVertices, maxIteration, jumpProbability, sampleSize));
DataSet<V> sampledVertices = gellyResult.getVertices()
.filter(new ByProperty<>(SamplingConstants.PROPERTY_KEY_SAMPLED));
DataSet<E> sampledEdges = graph.getEdges()
.join(sampledVertices)
.where(new SourceId<>()).equalTo(new Id<>())
.with(new EdgeSourceVertexJoin<>(SamplingConstants.PROPERTY_KEY_SAMPLED))
.join(sampledVertices)
.where(1).equalTo(new Id<>())
.with(new EdgeTargetVertexJoin<>(SamplingConstants.PROPERTY_KEY_SAMPLED))
.filter(new EdgesWithSampledVerticesFilter<>(Neighborhood.BOTH))
.map(new Value0Of3<>());
return graph.getFactory().fromDataSets(sampledVertices, sampledEdges);
}
}